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Distance estimation using artificial neural networks: 
architectures, capabilities and limitations

Tomasz HACHAJ*

ABSTRACT
The ability to judge distances using vision is an extremely important skill that greatly facilitates 
exploration of one’s immediate environment. Most commonly, spatial vision is associated with 
stereo vision. Although human eyes also act as a stereo vision system, we can perform a simple 
experiment by covering one eye and then look at our surroundings: even though we are now 
observing the world through a single “sensor” we can still judge which objects are closer and 
which are further away. Though we can also employ a slight change in viewing perspective 
to improve our sense of distance, this is not necessary and using even one eye and standing 
still we are able, through the experience we have gained, to correctly estimate the distances 
between the objects we can see. Also when we look at photographs although the images are 
two-dimensional, we are able to estimate the distance portrayed in them. In recent years many 
solutions based on machine learning methods and deep neural networks have been developed 
that can mimic this process. In particular, encoder-decoder architectures are effective in this 
task which allows a robot single-frame depth estimation. However, these solutions still have 
some limitations, which constitute a challenge for researchers and engineers. This paper will 
discuss the challenges faced by such architectures based on the author’s experience in the prac-
tice of developing deep learning-based single-frame depth estimation algorithms.
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1. INTRODUCTION

The ability to judge distances using vision is an extremely important skill that 
greatly facilitates the exploration of the surrounding environment and in the 
case of animals even determines survival (Vallar & Maravita, 2009). Most com-
monly, spatial vision is associated with stereo vision. Stereo vision involves 
integrating the results of observations from two independent vision sensors, 
whose parameters and mutual position are known. Although human eyes also 
act as a stereo vision system, we can perform a simple experiment involving 
covering one eye and then look at our surroundings: even though we are now 
observing the world through a single sensor we can still judge which objects 
are closer and which are farther away. Similarly, when we look at photographs, 
images or a picture in three-dimensional visualizations projected onto a com-
puter screen even though the images are two-dimensional, we can estimate the 
distance portrayed in them.

Human space perception is strongly correlated with the environmental ge-
ometry around the moving eye (Gordon, 1965). We know that the interpretive 
scaling of visual angle is a key factor in size, distance, and motion estimation. 
We gain knowledge over the practice of interpreting visual stimuli gradually 
in the process of development. It is known that perception is a complex pro-
cess, where prior knowledge exerts a fundamental influence over what we see 
(Sciutti et al., 2014). Research works indicate that even newborns readily turn 
toward visual stimulation, indicating that primitive localization systems oper-
ate at birth (Muir, Humphrey, & Humphrey, 1994; Neil et al., 2006). It is 
suggested that structural maturation of the visual cortex at this age results in 
an increase of visual spatial integration and pattern analysis. Reviews on hu-
man functional neuroimaging that have investigated the reference frames used 
in different cortical regions for representing spatial locations of objects can be 
found in papers of Gaspare Galati et al. and Russell Epstein and Chris Baker 
(Galati et al., 2010; Epstein & Baker, 2019). Visual space perception translates 
into motion path planning and the memorized spatial position of objects can 
be used by humans even when they close their eyes (Loomis et al., 2002). 
The findings suggest that specific types of spatial perception increase with age 
(Ishak & Haymaker, 2018) and that adults make more consistent judgments 
of distance than children.

1.1. Distance estimation vs SLAM

The ability to perceive the environment and self-locate in it can be formu-
lated as a SLAM (simultaneous localization and mapping) — type problem 
known from robotics. SLAM problems require multiple reference frames to 



Distance estimation using artificial neural networks… 15

estimate the location of objects in the space surrounding the observer (Galati 
et al.,  2010). Solutions such as ORB-SLAM (Mur-Artal, Montiel, & Tar-
dos, 2015) and its many variants (Mur-Artal & Tardos, 2017; Campos et al., 
2021; Mazurek & Hachaj, 2021) allow for a rapid estimation of the position 
of the observer as well as a mapping of its surroundings, but do not have the 
ability to learn (optimize) the parameters of the filters processing the input 
image. These methods use feature detectors (most often being the particular 
edges of objects) generating a sparse points cloud, which has a limited ability 
to accurately estimate the distance of individual objects in the image.

In order to generate a dense point cloud that would allow for the evaluation 
of distances to all and a not just a specific object visible in the image, a more 
general method is needed, taking into account not only the contours of the ob-
jects but also the texture of the surface and the proportions of the characteris-
tic objects. Moreover, it would also be useful to eliminate the need for observer 
movement, so that these methods could also be used for single images rather 
than entire video sequences. Filters that could model such complex image 
processing and analysis would be difficult to design manually. Convolutional 
neural networks are therefore most commonly used for this purpose.

1.2. Single-frame depth estimation

In recent years many solutions based on machine learning methods and deep 
neural networks have been developed that allow such distance estimates to be 
made (Mertan, Duff, & Unal, 2022; Zhao et al., 2020; Ming et al., 2021; Laga 
et al., 2022). In particular, encoder-decoder architectures (E–D) (Guo, Wang, 
& Wang, 2019) are effective in this task which allows a  robot single-frame 
depth estimation. However, these solutions still have some limitations, which 
are a challenge for researchers and engineers.

1.3. Novelty of this paper

In this paper I will discuss the challenges faced by single-frame depth estima-
tion architectures based on the author’s experience in the practice of developing 
deep learning-based single-frame depth estimation algorithms. An interesting 
piece of information, which is not available in most contemporary papers, is 
what type of distance estimation errors occur most often, and whether there 
are common errors among popular architectures. If these errors are common 
in different architectures, it means that they constitute general limitations of 
typical encoder-decoder models. If a  certain type of error occurs in a  spe-
cific model, it could be either a limitation of that architecture or the effect of 
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specific training. I have evaluated five different state-of-the-art network archi-
tectures that were published in the last four years. They differ significantly in 
the number of parameters (weights) (see Table 1), ranging from 2.1 M to over 
100 M. I conducted a comparison by generating a depth video for 121 record-
ings collected during drone flights under laboratory conditions. Each of the 
algorithms I have used already has its own numerical quality assessment using 
well-known benchmarks, however to my knowledge they have not yet taken 
a comprehensive look at the typical errors and limitations that exist between 
the different models and that are evident in the generated recordings. The re-
sulting conclusions provide important insights into the capabilities and limita-
tions of modern E–D based single-frame depth estimation algorithms.

2. MATERIALS AND METHODS

In this section, I will discuss the neural networks I used in the experiment and 
the training sets on which they were learned and evaluated.

2.1. Data set

The NYU-Depth V2 data set (Silberman et al., 2012) is one of the most popu-
lar data sets used by almost every depth prediction algorithm for both training 
and validation. It is comprised of 1449 densely labelled pairs of aligned RGB 
and depth images recorded by cameras from the Microsoft Kinect (Han et 
al., 2013). I have used NYU-Depth V2 to train and numerically validate each 
neural network.

A new data set consisting of 112 recordings made with the UAV’s (un-
manned aerial vehicle) camera was proposed in the paper (Hachaj, 2022). To 
acquire those recordings the drone moved through an indoor space (laboratory 
room) that was 7.20 m long, around 2 m wide, and around 4 m high. The 
room was artificially lit, and the windows were covered with blinds. The room 
had various furniture such as desks, boxes, chairs, etc. There were various types 
of obstacles in the vehicle’s path, both moving and static. In this work, I use 
this collection to visually assess from it whether the tested algorithms correctly 
detect the mutual position of the objects (which one is closer and which one is 
farther away) as well as whether any objects are missed during distance estima-
tion. These observations are not intended to numerically assess the quality of 
the measurement made by the algorithm, but to detect typical errors that are 
visible to the human naked eye. The results obtained in this way are important 
because the human observer is specialized in studying the mutual distances of 
objects from each other and in detecting objects that are relevant from the 
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perspective of movement. Data was gathered with Tello UAV that is lately 
a popular choice in various research (Subash et al., 2020). The recording was 
calibrated using a pinhole camera model (Zhang, 2000).

2.2. Selected state-of-the-art networks architectures

A large number of contemporary networks used for depth image prediction 
use U-net like architectures (Ronneberger, Fischer, & Brox, 2015). These 
models are used, for example, in object segmentation (Yao et al., 2020; Sid-
dique et al., 2021) and reconstruction (Tang et al., 2022). By using so-called 
skip-connections, U-nets process data from several resolutions at individual 
decoder layers.

Figure 1 shows the architectures of four E-D that have been proposed 
over the past four years for single-frame depth estimation. These are SPEED 
(Papa et al., 2022) (the source code is available at: https://github.com/loren 
zopapa5/SPEED), proposition of Ibraheem Alhashim and Peter Wonka  
(Alhashim &  Wonka, 2018a; https://github.com/ialhashim/DenseDepth), 
MIDAS (Ranftl et al., 2022; https://github.com/isl-org/MiDaS) and E–D 
proposed by Tomasz Hachaj (Hachaj, 2022; https://github.com/browarsoft-
ware/tello_obstacles). For the purpose of this work, I also prepared an imple-
mentation of Alhashim and Wonka algorithm (Alhashim & Wonka 2018a) in 
which I removed the fourth skip-connection, which resulted in a reduction of 
the number of network weights by nearly half. I have labelled this network in 
Table 1 as Alhashim and Wonka (small version). For evaluation purposes I used 
pretrained network weights or, if these were not available, I did the training on 
a NYU-Depth V2 data set using the Adam optimizer (Kingma & Ba, 2015).

The above networks differ significantly in the number of parameters 
(weights) (see Table 1), ranging from 2.1 M to over 100 M. The number of 
network weights translates into the speed of the network architecture and its 
hardware requirements. As is usually the case in scientific papers, each of those 
networks is reported to be effective and useful in practical applications. An 
interesting piece of information, which is not available in any of these papers 
except (Hachaj, 2022) is what type of distance estimation errors occur most 
often, and whether there are common error types in all these architectures. 
If these errors are common to different architectures, it means that they con-
stitute general limitations of typical U-net based encoder-decoder models. If 
a certain type of error occurs in a specific model, it could be either a limitation 
of that architecture or the effect of a training algorithm choice.

The construction of the encoder of each network I consider in this research 
is based on a well-known convolutional feature extractor (DenseNet — Huang 
et al., 2017; ResNet — He et al., 2016), which serves as the backbone of the 
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network. An important difference is the number of skip connections and the 
decoder layer architectures (see bottom of Figure 1).

Another important aspect critical to the quality of the network’s perfor-
mance is its training procedure and the loss function. Let us assume that is 
a ground truth depth image and is an image with predicted depth values. Index 
i ∈ [1, …, n].

A very common loss, used for example, in the methods described by Alhashim, 
Wonka and Hachaj (Alhashim & Wonka, 2018a; Papa et al., 2022; Hachaj, 
2022) is a three-element function composed of the following components:

• Point-wise depth loss for image index i:

       (1)

where mean(X) is the averaged value of matrix X elements.

• Edge-wise loss for image index i:

 
 (2)

• Structural similarity (SSIM) index (Z. Wang et al. 2004) loss for image 
index i:

 (3)

where clip (x, 0, 1) is an element-wise value clipped to the range (0, 1) and 
the maximum depth is the maximal value of the depth pixel in the image.

The final loss function becomes:

 (4)

where w1 = 1, w2 = 1, w3 = 0.1 (Alhashim & Wonka, 2018b).

Image augmentation during the training consists of colour modification and 
mirroring.

The above-defined loss function is, of course, not the only effective way to 
optimize the network. René Ranftl (Ranftl et al., 2022) uses the following loss: 
let us define lssi,i as the absolute deviations term, trimming the 20% largest 
residuals in every image:
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       (5)

Where  is a mean of the 80% smallest residuals between pixels in 
and .
Another component of this loss is the gradient matching term:

    (6)

Where  and Rk denotes the difference of the disparity maps 
at scale k. 

Finally, the loss used by Ranftl (Ranftl et al., 2022) is of the form:

         (7)

Where α = 0.5.

2.3. Evaluation metrics

There are four state-of-the-art metrics that are used for the numerical evalua-
tion of depth estimation performance (Eigen, Puhrsch, & Fergus, 2014):

• average relative error (lower is better):

         (8)

• root mean squared error (lower is better):

       (9)

• average (log10) error (lower is better):

    (10)

• threshold accuracy (higher is better):

         (11)

where t1 = 1.25, t2 = 1.252, t3 = 1.253.
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Figure 1: The architectures of the neural networks used in the study in this work: SPEED 
(Papa et al., 2022), Alhashim and Wonka (Alhashim & Wonka, 2018b), MIDAS (Ranftl 
et al., 2022) and Hachaj (Hachaj, 2022). Alhashim and Wonka (small version) is the same 
as proposed by Alhashim and Wonka ( Alhashim & Wonka, 2018b), only it does not have 
a fourth skip-connection.
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Table 1: Comparison of the performance of various depth estimation neural networks on the 
NYU-Depth-v2 data set. The results are reported from the original papers. The second col-
umn shows the numbers of parameters in millions (M).

Method #Params (M) δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓

MIDAS > 100 0.832

SPEED 2.1 0.783 0.158 0.566

Alhashim I.  
and Wonka P. 42.8 0.846 0.974 0.994 0.123 0.465 0.053

Alhashim I. and 
Wonka P. (small ver.) 21.5 0.841 0.972 0.993 0.130 0.567 0.054

Hachaj 6.3 0.819 0.965 0.992 0.139 0.587 0.059

3. RESULTS

The numerical performances of networks described in Section 2.2 tested on 
NYU-Depth V2 detest are shown in Table 1. Then I generated distance esti-
mates for each of the 112 UAV’s video recordings introduced in Section 2.1 
using all five networks. Each of these video recordings was then viewed to 
determine if there were any distortions in the objects’ mutual positions and 
distance misjudgements that were visible to the naked eye. The confrontation 
of the metrics from Table 1 with the results of the visualization of distance 
measurements made by the tested algorithms provides an opportunity to evalu-
ate the suitability of the algorithm’s performance in specific scenarios. I will 
discuss these in the next section.

Example visualizations showing the misjudgements of distances by a single 
or each of the networks are shown in Figure 2 and 3. Figure 4 presents a 3D 
reconstruction of the observed scene using the point cloud obtained from the 
neural network (Hachaj, 2022). Each of the tested algorithm introduced per-
turbations similar to those seen in Figure 4. Due to this I have in this paper 
presented point cloud visualizations from only one network in order not to be 
redundant.



22 Tomasz HACHAJ

(a)

(b)

(c)

Figure 2: Example depth estimations of the tested algorithms. A discussion can be found in 
Section 4.
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(a)

(b)

(c)

Figure 3: Another example depth estimations of the tested algorithms. A discussion can be 
found in Section 4.
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(a)

(b)

(c)

(d)

Figure 4: 3D reconstruction of the observed scene using the point cloud obtained from the 
neural network (Hachaj, 2022).

4. DISCUSSION

The results in Table 1 are not sufficient to evaluate the usefulness of a cer-
tain network in practice. It is also difficult to interpret the results of metrics  
(8)–(11). It is not entirely clear what is the direct translation of the value of 
the evaluation metric into the quality and usefulness of the distance estimate. 
The evaluation on 112 video recordings proves that Speed algorithm in prac-
tice does not work (!), while its results in Table 1 are not much lower than the 
evaluation values of the other methods. MIDAS seems to be visually much 
better than the other tested methods (it gives the smoothest results), but its 
σ1 value is not the highest among all the tested methods. What is more based 



Distance estimation using artificial neural networks… 25

on the observations made during the experiments all networks are able to 
judge the distances of objects located at a minimum distance of approximately 
20–30 cm from the camera. If the objects are closer, networks do not work 
properly and recognize the objects’ textures as separate objects. The larger the 
network is (the more weights it has); the better it is at estimating the mutual 
position of various objects visible in the scene. For example, only MIDAS in 
Figure 2 (a) coped with detecting the object that is at the top of the image. 
The SPEED network provides virtually no visually useful results. None of the 
networks is error-free. As can be seen in Figure 3 (c) no architecture could 
correctly locate and estimate the distance from two boxes standing parallel to 
each other with free space between them. In the case of Figure 2 (b), MIDAS 
misjudged the distance by concluding that the hand of the person holding 
the package was in front of the package. This error was equally not avoided by 
the other architectures. In some cases, the networks fail to estimate distances 
from flat surfaces in solid colour (see Figure 4 (a)). Also distance estimates are 
unstable and fluctuate depending on micro-interference on the video sensor.

Deep single-frame E–D cannot be used as an accurate method to make dis-
tance measurements. Each network returns varying values that may be non-
linearly scaled from reality. The most important limitation is that an up-to-date 
single frame depth estimation networks cannot precisely estimates distances but 
merely determinate which objects are closer and which are further away.

Based on the research I have done, it can be assumed that most often the 
larger the network is, the more accurate the distance estimations are. In prac-
tice, this affects the calculation time. At the moment, it seems that MIDAS ar-
chitecture has reached the limit of distance estimation quality for a U-net type 
architecture. In order to make a qualitative leap it would probably be necessary 
to use a different network structure than the deep encoder-decoder employed.

Currently, well-functioning networks have so many parameters that it is 
difficult to miniaturize them for mobile devices (microcomputers) and adapt 
them to work with TPU co-processors such as Edge (Cass, 2019) in order to 
make them operational in real time. If the number of neural network weights 
could be reduced, the energy expenditure required to operate distance-estimat-
ing networks could be reduced.

5. CONCLUSION

In summary, modern single-frame depth estimation algorithms based on E–D 
architecture are effective for estimating the mutual distance of objects, but they 
require relatively high computing power to operate in real time. They cannot be 
used to make accurate distance measurements. None of the tested architectures 
always works correctly. A recurring error is the misjudgement of the distance of 
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objects located at the corners of the image as well as the misjudgement of the 
distance of objects composed of several solids lying on top of each other or close 
to each other. The occurrence of this type of error is a common feature of all 
tested algorithms. Reduction of the number of network parameters results in 
a reduction of accuracy right up to the complete cessation of functionality.

An important challenge for the future is to propose new neural architec-
tures and new training methods and loss functions that would allow for the 
miniaturization of the network. It also seems necessary to propose new net-
work architectures that would eliminate errors that occur in each of the tested 
algorithms. An assumption can be made that merely increasing the number of 
weights of E–D convolutional networks may not be sufficient.
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